
DataTable Custom Control (Version1.1)
Working Model

Copyright (C) - 1993
by

Douglas A. Bebber
All rights reserved

Table of Contents

Introduction .. 3

Database Fundamentals ... 6

DataTable Custom Control .. 11

DataTable Example Programs ...
16

DataTable / Paradox Engine Error Codes ..57

Introduction

2

What is the DataTable?

 The DataTable product is a Microsoft Windows Custom Control (DATATBL.VBX)
designed to provide Visual Basic/Visual C++ programmers with a sophisticated, yet
easy-to-use tool for building database management applications. Using the DataTable,
Visual Basic programmers can build sophisticated multi-user, network compatible
database management applications and distribute the DATATBL.VBX file with those
applications on an unlimited, royalty-free basis. The DATATBL.VBX product presents the
Visual Basic programmer with a simple, easy-to-use interface to Borland International's
Paradox Engine. The Paradox Engine is a complete multi-user, network compatible API
written in the C programming language. The DataTable product is a visual Custom
Control interface to the Paradox Engine specifically designed for Visual Basic
Programmers. DataTable (version 1.1) is compatible with Visual Basic 1.0 and 2.0 and
runs in Microsoft Windows 3.0 as well as Microsoft Windows 3.1.

 The DataTable (version 1.1) working model product itself contains a rather extensive
subset of the full-featured DataTable product (available only to registered users). Even
though it is a subset, it has all the essential functionality necessary to design full-
featured database applications. As a matter of fact, you can design a very
sophisticated package in its entirety using only the working model. I included this
functionality in the working model so you could better evaluate the product and its
capabilities before registering. However, you are not allowed to distribute applications
designed around the working model. You must first obtain a registered copy of the
DataTable product before you are allowed to distribute the DataTable with your
commercial applications (this includes Shareware products).

 The DataTable working model has been called a "NagWare" product. There is a pop-
up window in the working model that constantly reminds users that the product is for
pre-registration evaluation only and cannot be distributed as part of any product. It is
displayed throughout portions of the calling programs code. When you register your
copy of the DataTable, you get two versions of the DATATBL.VBX (one for development
and another for product distribution) both without the "NagWare" pop-up window.

 This documentation describes the DataTable product. It specifically describes the
DataTable (version 1.1) working model which is currently being distributed over
computer bulletin board services in the United States of America. The DataTable
(version 1.1) working model is a Shareware product, it is copyrighted and I reserve all
rights to it. You may distribute it to others, through any means, as long as you do not
charge others for the product itself, or alter the product in any way.

Douglas A. Bebber
May 6, 1993

3

How to Register

 You can obtain a registered copy of the DataTable (version 1.1) product for only
$49.95. The package includes:

- A full-featured DATATBL.VBX (access to all functions\properties minus the "NagWare"
pop-up).
 (one .VBX for development and another for product distribution.)

- DataTable users manual complete with example Visual Basic programs and source
code.

- DataTable Technical Reference Manual describing all DataTable properties in detail.

- Unlimited, royalty-free rights to distribute the run-time DATATBL.VBX with your
applications.

- Notice of product updates.

- Free telephone technical support.

To register send check or money order to:

Douglas A. Bebber
1834 37th Street
Rock Island, Illinois 61201
(309) 786-9602

(make notes payable to: Douglas A. Bebber)

4

Trademarks

Visual Basic and Windows are registered trademarks of Microsoft Corporation.
Borland C++ is a registered trademark of Borland International.
PARADOX is a registered trademark of Borland International.
PARADOX Engine is a registered trademark of Borland International.

DataTable was written in Borland C++ (version 3.0) by Douglas A. Bebber. Address inquiries and
bug reports (preferably Dr. Watson along with a listing of the suspected code) to

Douglas A. Bebber

Internet mail address:
bebberd@rr.bhc.edu

U.S. Postal Address:
1834 37th Street
Rock Island, Illinois 61201

Testing

 DataTable was written and tested on a variety of 286, 386, and 486 PCs. Record and file locking
functions were tested and verified on Lantastic and Novell based ethernet LANs as well as in the
standard Windows environment between multiple applications.

If your LAN hardware or software differs significantly and DataTable does not run properly, I would
appreciate a Dr. Watson UAE (General Protection Fault) report sent to my Internet address. Please
describe your operating environment in detail and include a listing of your CONFIG.SYS and
WIN.INI files.

Note: DataTable based Visual Basic programs will not be able to execute properly if DATATBL.VBX
and PXENGWIN.DLL files are not in directories included in your MSDOS PATH statement. You
must also have SHARE.EXE loaded to properly run the database engine environment.

Note: DataTable will only execute in Windows Standard and 386 Enhanced modes.

Compatability and New Releases

 The DataTable (version 1.1) is compatible with Borland International's Paradox Engine version
2.0. Registered users of the VBENGINE 1.0 product will receive a free upgrade to the DataTable
(version 1.1) product.

Additional functions/features present in the registered version of the DataTable product:

+ File lock/unlock capabilities.
+ File encrypt/decrypt capabilities.
+ Table create/delete routines (via code)
+ Index create/delete routines (PRIMARY and SECONDARY indexes via code)

5

+ Network user identification routines
+ Table copy/add/rename/empty and other similar routines.

Database Fundamentals

6

What is a Database?

 For our purposes we will limit this discussion to the world of IBM PC compatible
database management systems. Specifically, relational database management systems
designed around Borland International's Paradox Engine and the user friendly Visual
Basic custom control (the DataTable).

 In this context, we can say that a database consists of one or more related files
(tables in DataTable terminology) that hold information in an orderly, efficient manner.
The database tables consist of several rows and columns into which, information is
placed. The columns are generally referred to as "Fields" and the rows as "Records".

 We will not delve into a lot of theoretical concepts in this section, rather we will
present concepts in order to promote a general understanding of database principles.
Just enough to give the beginner a kick-start into the world of database programming.
(the DataTable User's manual covers a little more theory and provides references to
more extensive texts.)

 To illustrate the principles involved in simple database design we will present a
model which we will build on in the DataTable Programming Examples section of this
manual. To start, we will design a simple database which will hold information
concerning the customers of a small business owner. We will design the database from
scratch and will detail its structure in this section.

 Our small business owner tells us that he would like to maintain a certain set of facts
concerning each one of his customers. Specifically, he would like to have the following
information concerning each customer in his database:

1.) The customer's Name
2.) The customer's street address
3.) The customer's city of residence
4.) The state that the customer lives in
5.) The customers zip code
6.) The customer's telephone number

 This listing of required information is the first essential step in the design of database
systems. It is absolutely essential that you compile the needed sets of information that
must be maintained. In the world of database programming this step is called
"compiling a data dictionary". Over time additional items of information get added to
the list. Sometimes, certain items need to be broken down into several smaller parts so
a more detailed or "higher resolution" picture can emurge.

 The items listed above are the essential pieces of information our small business
owner requires for each of his customers. Each piece of information is needed for every
customer. If we think of this conceptually, the required information expands in only one
direction. Every time we compile the required set of information for a customer our
information grows. Its not that we get more information or details concerning the
7

customer, but that we get more customers with the same set of information (Name,
Address, etc,).

 In a computer-based database system we generally define a set of data that we
would like to obtain for each new entry into the database system. This set of
information is called the database field set, consisting of a finite set of fields. The six
items listed above are our database fields. The entries in our database, each consisting
of the same set of fields, are our records. Each and every one of our customers
constitute an individual record in our data base. As you can see, our set of required
fields should remain more or less constant. But we hope that our customer base
continues to expand. In general databases expand in one direction, in our terms,
horizontal, record expansion.

 Given the above, we can now look at the structure of our database diagramed below
(fields vertically, records horizontally):

Name Address City State Zip phone

Bob Smith 1111 3rd St. Denver CO 11276 323-998-
9987
June Day 220 8th Ave Moline IL 61265 309-762-1100
Tom Leaky 11 3rd St. Milan IL 61201 309-753-0098

etc.

 It starts out just that simple. A Visual Basic program to maintain just this sort of
minimal database would consist of nothing more than a form consisting of Labels and
Text boxes designed to aid the user in data entry and a few buttons to facilitate
database functions. The DEMO1 example program is a close approximation of this sort
of application.

Database Field Types
 Each field in a database has a corresponding data type. The available field types in
the DataTable (version 1.1) release are listed below:

Alphanumeric (A) field type permits the full ASCII character set (except ASCII 0) and
is used for entry of string data types. Fields of this type are specified as Axxx, where
the xxx represents the maximum length of the field in characters. For example, if you
were to create a field in a table which is intended to hold a maximum of 50 characters
you would specify the field as an A50.

Number (N) and currency ($) field types permit up to 15 significant digits (including
the decimal point) in the range of real numbers from ±10-307 to ±10307. Number field
values which are greater than 15 significant digits are rounded and stored in scientific
notation. Currency field values are stored in a default predefined format.

8

Short Number (S) field types permit values in the range of signed integers. (-32,767
to 32,767).

Date (D) field types permit any vaild dates between January 1, 100 A.D. to December
31, 9999. Date values are stored as long integers which represent the number of days
since January 1, A.D.

 DataTable programming involves handling database field values as strings only!
Regardless of the actual data type in the database file. This is mandated by the
DataTable data structures (Visual Basic User Defined Types). DataTable programmers
receive field values from data table files as String values and write database field
values to the DataTable control as String values regardless of the actual field value type
present in the database table file. The DataTable automatically performs data type
conversions based on the data type of the field in the database table file. This data
type conversion process is transparent to the Visual Basic programmer and provides a
much simpler interface to database programming.

Indexes and Searching

 Database files generally have some sort of indexing scheme in order to facilitate
quick searching capabilities. As stated previously, the DataTable Custom Control
(version 1.1) works with Paradox database files. Paradox database files have the
capability of supporting multiple indexes. These database indexes are classified into
two categories:

Primary indexes
Secondary indexes (maintained and non-maintained)

 The Primary index is the default index used in database searches, however, you are
able to create and use secondary indexes in your applications. In these database
indexes, you specify key fields for the index. The key fields are the fields you wish to
search on or order data by (Primary indexes must have all key fields one right after the
other with the first key field being the first field in the database) . Primary indexes can
have multiple key fields.

 Just like searching for specific topics in a book, searching a database for specific
information is done much more quickly when there is an index present. Indexes order
data viewed in a database table. For example, if you have a database table with a
single key field of type Number (N) in the Primary index. Database records viewed
through that index will be ordered sequentially in ascending order based on the
numeric values present in the key field i.e., 0,1,2,3,4,5, etc.

 Database table files can be created through code when using the full featured
DataTable product. The Working Model release of DataTable however does not support
database table file creation through the use of code. A utility program called VBENGINE
9

DATABASE TABLE MAKER is included in the Working Model so that you can create your
own database tables. This utility is an interactive utility which is very easy to use.
Creating your tables with the VBENGINE DATABASE TABLE MAKER utility is much easier
than doing so through code.

 Database indexing and searching are some of the more complicated concepts when
first learning about database systems. DataTable programmer's who may need more
details concerning indexes, searching via indexes, general searching techniques, and
querying database tables should obtain a copy of the DataTable User's Manual.

Multi-User Environments

 The DataTable Custom Control can be used in Local Area Network environments
consisting of multiple users sharing the same database. The DataTable working model
comes with file and record locking facilities. DataTable Action property values specific
to network file sharing environments are LockRecord, UnlockRecord, LockFile,
UnlockFile, GetUserName, etc. Note: only record locking is supported in the Working
Model. The GetUserName is also unavailable in the Working Model.

 For a complete description of the concepts introduced in this section and information
on other DataTable database related information please see the DataTable User's
Manual. For specific information on the Paradox database file structure and concepts
relevant specifically to the Pardox Engine see the Paradox Engine User's Guide
available from Borland International.

10

DataTable Custom Control

11

DataTable

Description
 DataTable objects provide Visual Basic programmers with the ability
to interface with database files and the information present in them.

File Name
 DATATBL.VBX

Object Type

 DataTable

Remarks

 The DataTable custom control is used to interface Visual Basic to
database tables (files). Using this custom control Visual Basic
programmers have access to multi-user, network compatible database
resources.

 The control has a few standard properties along with several
DataTable specific properties. Since this control has been designed
primarily to support Visual Basic programmers through code, there are
no special "Visual" properties or elements in the DataTable custom
control. As a matter of fact, the custom control itself is intended to be
invisible at run-time.
12

 You are able to interactively manipulate database tables at design time with the
DataTable control. (You may wish to practice DataTable operations at design time to get
familiar with the control.)

 Before you are able to manipulate database tables those tables must already exist.
The VBENGINE DATABASE TABLE MAKER utility program allows you to create PARADOX
tables (those used with the DataTable custom control) interactively.

Distribution Note

 When you create and distribute applications which use the DataTable
custom control you should install the files DATATBL.VBX and
PXENGWIN.DLL in the customer's Microsoft Windows \SYSTEM
subdirectory.

Properties

The properties for this control are listed below. Properties that apply only
to this control are marked with an asterisk.

*Action Left *SearchMode
*FieldName Name *TableName
*FieldType *NRecords Tag
*FieldValue *Reaction Top
*IndexID *RecordNumber Visible
*KeySearch *SaveEveryChange

Action
Description

 All database operations such as opening a database file, getting a record, getting a value from a
field, etc. are classified as Actions. There are twenty-five DataTable Actions available for use in this
Working Model release of the DataTable.

Remarks

 The Action property settings are:

Setting Description
--

13

0 None (No action)
1 AppendRecord
2 ClearRecord
3 CloseTable
4 DeleteRecord
5 FirstRecord
6 GetField
7 GetFieldType
8 GetRecord
9 GetRecordNumber
10 GotoRecord
11 InsertRecord
12 LastRecord
13 LockRecord
14 NRecords
15 NextRecord
16 OpenTable
17 PreviousRecord
18 PutBlank
19 PutField
20 RefreshTable
21 SearchField
22 SearchKey
23 UnlockRecord
24 UpdateRecord

DataType

Integer (Enumerated)

DataTable Actions

0-None

Description

 This Action does nothing.

1-AppendRecord

Description

 Appends a record to a database table.
14

Remarks

 This Action writes (appends) the record to the database file. If the database is indexed the
AppendRecord Action works similar to the InsertRecord Action and the record is inserted into the
database file at a place determined by the database index. If the database file is not indexed the
appended record is added to the end of the database file. In both cases the newly appended record
becomes the current record. Upon a successful Action the Reaction property will contain a zero (0).
In the event of an error, a non-zero error number is placed in the Reaction property.

See Also

InsertRecord, UpdateRecord, DeleteRecord.

2-ClearRecord

Description

Clears out the current record for the specified database table.

Remarks

This function clears the DataTable's internal record information. Specifically all internal
information for the DataTable's record structure is erased. It is a convienient way to
clear all the field values for a specific record and is functionally equivalent to doing the
PutBlank Action for each and every field. Upon a successfull ClearRecord Action, an
integer value of zero (0) is placed in the DataTable's Reaction property. In the event of
an error, a non-zero integer error value is placed in the Reaction property.

See Also PutBlank

3-CloseTable
Description

Closes a previously opened database table.

Remarks

This Action ensures that all buffered data is saved to disk and all memory allocated for
the open table is released when the table is properly closed. When a Visual Basic
15

Program is finished with a database table it should do a CloseTable Action to insure
that the table is properly closed and that no data is lost.
Upon a successfull CloseTable Action, an integer value of zero (0) is placed in the
DataTable's Reaction property. In the event of an error, a non-zero integer error value
is placed in the Reaction property.

See Also

OpenTable

4-DeleteRecord

Description

Deletes the current record from the database table.

Remarks

This Action deletes the current record in the database table. The database table and
the current record are contained inside the DataTable control. Upon a successfull
DeleteRecord Action, an integer value of zero (0) is placed in the DataTable's
Reaction property. In the event of an error, a non-zero integer error value is placed in
the Reaction property.

5-FirstRecord

Description

Positions the current record on the first record in the database table.

Remarks

This Action, if successfull, moves to the first record in the database table and makes
that record the current record. The database table and the current record for that table
exist in the DataTable control.
Upon a successfull FirstRecord Action, an integer value of zero (0) is placed in the
DataTable's Reaction property. In the event of an error, a non-zero integer error value
is placed in the Reaction property.

See Also

LastRecord, NextRecord and PreviousRecord.

6-GetField

Description

16

Reads the value of a specified field from the current record of a database table.

Remarks

This Action reads the value of the field specified by DataTable.FieldName and places
that field's value in DataTable.FieldValue. The field value read is that of the current
record in the database table. All field values placed in DataTable.FieldValue are of
type string regardless of the actual data type stored in the table itself. Upon a
successfull GetField Action, an integer value of zero (0) is placed in the DataTable's
Reaction property. In the event of an error, a non-zero integer error value is placed in
the Reaction property.

7-GetFieldType

Description

Gets the data type for a database field.

Remarks

This Action returns the data type of the field specified in DataTable.FieldName. You
use this function when you wish to determine the actual data type of the field as it is
stored in the database table. The possible data types returned are as follows:

Field Type Data Type

 N Numeric
 S Short number
 $ Currency
 Annn Alphanumeric
 D Date

The field type is returned in the DataTable.FieldType property. Upon a successfull
GetFieldType Action, an integer value of zero (0) is placed in the DataTable's
Reaction property. In the event of an error, a non-zero integer error value is placed in
the Reaction property.

8-GetRecord

Description

Reads the current record in the database table.

Remarks

This Action, if successfull, reads the current record in the database table.The database
table and the current record for that table are present in the DataTable control. Upon a
17

successfull GetRecord Action, an integer value of zero (0) is placed in the DataTable's
Reaction property. In the event of an error, a non-zero integer error value is placed in
the Reaction property.

See Also

FirstRecord, LastRecord, NextRecord and PreviousRecord.

9-GetRecordNumber
Description

Gets the database record number of the current record.

Syntax

Remarks

The GetRecordNumber Action gets the record number of the current record. The
current record and database table are present in the DataTable control. The record
number is placed in the DataTable.RecordNumber property. Upon a successfull
GetRecordNumber Action, an integer value of zero (0) is placed in the DataTable's
Reaction property. In the event of an error, a non-zero integer error value is placed in
the Reaction property.

10-GotoRecord

Description

Goes to the specified record number in the database table and makes that record the
current record.

Remarks

This Action moves to the DataTable.RecordNumber record in the database table and
makes that record the current record. Upon a successfull GotoRecord Action, an
integer value of zero (0) is placed in the DataTable's Reaction property. In the event of
an error, a non-zero integer error value is placed in the Reaction property.

11-InsertRecord
Description

Inserts a record into the database table file.

Remarks

18

This Action inserts a record into the database table file. If the database file is indexed
the InsertRecord Action works similar to the AppendRecord Action and the record is
inserted in the database file at a location specified by the database index. If the
database file is not indexed the new record is inserted before the current record. In
both cases the newly inserted record becomes the current record. Upon a successfull
InsertRecord Action, an integer value of zero (0) is placed in the DataTable's
Reaction property. In the event of an error, a non-zero integer error value is placed in
the Reaction property.

See Also

AppendRecord, UpdateRecord, DeleteRecord.

12-LastRecord

Description

Moves to the last record in the database table.

Remarks

This Action moves to the last record in the database table and makes that record the
current record. Upon a successfull LastRecord Action, an integer value of zero (0) is
placed in the DataTable's Reaction property. In the event of an error, a non-zero
integer error value is placed in the Reaction property.

See Also

FirstRecord, NextRecord and PreviousRecord

13-LockRecord

Description

Locks the current database record.

Remarks

This Action locks the current record. The database table and it's current record are
specified in the DataTable control. Once the record is successfully locked, no other
users are able to delete, or otherwise write to the record until the record is unlocked
with an UnlockRecord Action. Upon a successfull LockRecord Action, an integer
value of zero (0) is placed in the DataTable's Reaction property. In the event of an
error, a non-zero integer error value is placed in the Reaction property.

See Also

19

UnlockRecord

14-NRecords

Description

Gets the number of records present in the database table.

Remarks

This Action gets the total number of records present in the database table specified in
the DataTable control. The number of records is placed in the DataTable.NRecords
property. Upon a successfull NRecords Action, an integer value of zero (0) is placed in
the DataTable's Reaction property. In the event of an error, a non-zero integer error
value is placed in the Reaction property.

15-NextRecord

Description

Moves to the next record in the database table.

Remarks

This Action moves to the next record in the database table and makes that record the
current record. The database table is specified in the DataTable control. Upon a
successfull NextRecord Action, an integer value of zero (0) is placed in the
DataTable's Reaction property. In the event of an error, a non-zero integer error value
is placed in the Reaction property.

See Also

FirstRecord, LastRecord, and PreviousRecord.

16-OpenTable

Description

Opens a database table file for subsequent processing.
20

Remarks

Before you can process information in a database table file, you must first open that file
for processing. You open database table files by performing the OpenTable Action. To
successfully open a database table you will need to specify three other DataTable
properties:

DataTable.TableName
DataTable.IndexID
DataTable.SaveEveryChange

DataTable.TableName should hold the name of the database table file including any
MSDOS PATH specifier. Do not include the file extension.

DataTable.IndexID should specify the index you wish to use for table operations.
MASTERINDEX should be used to open the table with all of it's associated indexes. For
a specific index, specify the field number of the associated index.

DataTable.SaveEveryChange should specify whether you wish to save every change
to disk or whether you wish to buffer changes to disk. Buffering is faster, but you may
lose data if the power goes out (see FlushBuffers for information on writing buffered
data to disk). To buffer changes set this parameter to FALSE.

Once these three DataTable properties have been appropriately set, perform an
OpenTable Action to open the database table. Upon a successfull OpenTable Action,
an integer value of zero (0) is placed in the DataTable's Reaction property. In the event
of an error, a non-zero integer error value is placed in the Reaction property.

See Also

CloseTable, FlushBuffers, and CloseEngine.

17-PreviousRecord

Description

Moves to the previous record in the database table.

Remarks

This Action moves to the previous record in the database table and makes that record
the current record. The database table is specified in the DataTable control. Upon a
successfull PreviousRecord Action, an integer value of zero (0) is placed in the
DataTable's Reaction property. In the event of an error, a non-zero integer error value
is placed in the Reaction property.

21

See Also

FirstRecord, LastRecord, and NextRecord.

18-PutBlank

Description

Places a blank value into the specified field in the database record.

Remarks

This Action places a blank value into the field specified in the DataTable.FieldName
property. The field value is not written to the database table until the record is written
to disk using either InsertRecord, AppendRecord, or UpdateRecord Actions. A
blank value of the appropriate data type is placed in the field automatically. A blank
value is a valid value which represents the fact that the value has yet to be entered (a
blank value is not zero.) Upon a successfull PutBlank Action, an integer value of zero
(0) is placed in the DataTable's Reaction property. In the event of an error, a non-zero
integer error value is placed in the Reaction property.

19-PutField

Description

Places a field value into the specified field in the database record.

Remarks

This Action places the value found in DataTable.FieldValue for the field
DataTable.FieldName into the database record. The record in the database table file
is not actually modified until an InsertRecord, AppendRecord, or UpdateRecord
Action is performed. The table and record for the operation is specified by the
DataTable control. All field values to be written to a database field are placed in
DataTable.FieldValue and are of type String regardless of the actual data type of the
field in the database table itself. The PutField Action automatically converts the value
to the appropriate type before placing it in the database record. Upon a successfull
PutField Action, an integer value of zero (0) is placed in the DataTable's Reaction
property. In the event of an error, a non-zero integer error value is placed in the
Reaction property.

See Also

22

GetField, PutBlank.

20-RefreshTable

Description

Refreshes or updates a table image to reveal up-to-the minute changes.

Remarks

This Action updates the table image to reflect any changes to data that other users
may have made since your last table refresh. The following Actions automatically
refresh a table image RecordLock, UpdateRecord, InsertRecord, AppendRecord,
and DeleteRecord. Upon a successfull RefreshTable Action, an integer value of
zero (0) is placed in the DataTable's Reaction property. In the event of an error, a non-
zero integer error value is placed in the Reaction property.

21-SearchField

Description

Searches a database table file on a specified field.

Remarks

This Action searches through the database table for a value in a field. The database
field searched on is specified by DataTable.FieldName the field value to search for is
specified by DataTable.FieldValue. You need to set these two properties and then
perform the PutField Action. After that you need to specify your search mode
preference by setting DataTable.SearchMode to one of three values:

- SEARCHFIRST
- SEARCHNEXT
- CLOSESTRECORD

SEARCHFIRST begins the search at the first record in the database, the record
position of the current record is not changed if a search attempt fails to find a match.

SEARCHNEXT begins with the record following the current record in the database, the
record position of the current record is not changed if a search attempt fails to find a
match.

CLOSESTRECORD begins to search at the first record in the database, if a record is not
23

found (search attempt fails), one of two possibilities exist:

-If there is no exact match, there happens to be a record which has a value lexically
greater than the search value. The current record in the database will be the record
with the first such instance and a record not found error (89) returned.

- There is no record in the database that has a value greater or equal to the search
value. The current record will be the last record in the database and a record not found
error (89) returned.

A search can then be started with a call to the SearchField function.

The available search modes rely on the index on which the table is currently using.
SearchField always searches for the first record which fullfills the search criteria. On
non-indexed database tables SearchField searches via a sequential scan. The order of
the records searched through the sequntial scan is that of the physical order of the
records in the table itself. In non-indexed tables CLOSESTRECORD is not supported.
Upon a successfull SearchField Action, an integer value of zero (0) is placed in the
DataTable's Reaction property. In the event of an error, a non-zero integer error value
is placed in the Reaction property.

See Also

SearchKey

22-SearchKey

Description

Searches a database table for a key match.

Remarks

This Action searches the table specified in DataTable.TableName on the Primary
index. A search match is sought on the key field(s) of the table specified by
DataTable.SearchKey. The key to be matched must be the primary key or a subset of
the primary key. The fields to be matched are the fields which have been placed into
the database engine's record buffer via PutField Actions.

If there are five key fields and you are only interested in finding records which have
specific values in the first two key fields lets say "Date" and "Customer Name", you
want to search for records in the database that have 12/12/92 for the "Date" value and
"Robert Smith" for the "Customer Name" you would set the criteria for those fields and
place them in the database engine via PutField Actions. Your KeySearch would be set
up as DataTable.KeySearch = 2.
24

You need to specify your search mode preference by setting DataTable.SearchMode
to one of three values:

- SEARCHFIRST
- SEARCHNEXT
- CLOSESTRECORD

SEARCHFIRST begins the search at the first record in the database, the record
position of the current record is not changed if a search attempt fails to find a match.

SEARCHNEXT begins with the record following the current record in the database, the
record position of the current record is not changed if a search attempt fails to find a
match.

CLOSESTRECORD begins to search at the first record in the database, if a record is not
found (search attempt fails), one of two possibilities exist:

-If there is no exact match, there happens to be a record which has a value lexically
greater than the search value. The current record in the database will be the record
with the first such instance and a record not found error (89) returned.

- There is no record in the database that has a value greater or equal to the search
value. The current record will be the last record in the database and a record not found
error (101) returned.

The available search modes rely on the index on which the table is currently using.
SearchKey always searches for the first record that fullfills the search criteria. Once
the desired key fields have been set-up and submitted via PutField Actions, the
desired search mode specified, along with the keysearch specification, you can then do
a SearchKey Action. Upon a successfull SearchKey Action, an integer value of zero
(0) is placed in the DataTable's Reaction property. In the event of an error, a non-zero
integer error value is placed in the Reaction property.

See Also

SearchField and Database Searching in the Database Fundamentals section of
this manual.

23-UnlockRecord

Description

Unlocks a previously locked record.

Remarks

This Action unlocks a previously locked record. You are only able to unlock records that
25

you have previously locked. You can not unlock records locked by other users. A locked
record can also be unlocked under the following conditionss:

- You delete the record by performing a DeleteRecord Action.
- You do a CloseTable Action which unlocks all the records in that table before closing
the table.

Upon a successfull UnlockRecord Action, an integer value of zero (0) is placed in the
DataTable's Reaction property. In the event of an error, a non-zero integer error value
is placed in the Reaction property.

See Also

LockRecord

24-UpdateRecord

Description

Updates a record in a database table.

Remarks

This Action updates the record specified in the DataTable control to the database file.
There must be a current database record to update. Upon a successfull
UnlockRecord Action, an integer value of zero (0) is placed in the DataTable's
Reaction property. In the event of an error, a non-zero integer error value is placed in
the Reaction property.

See Also

AppendRecord, InsertRecord, DeleteRecord.

FieldName
Description

 This property is an ASCII string with a maximum length of 25 characters. This string holds the
name of the target database field.

26

DataType

String

FieldType
Description

 This property is an ASCII string with a maximum length of 5 characters. This property holds the
data type of the target database field.

Database Field Types
 Each field in a database has a corresponding data type. The available field types in
the DataTable (version 1.1) release are listed below:

Alphanumeric (A) field type permits the full ASCII character set (except ASCII 0) and
is used for entry of string data types. Fields of this type are specified as Axxx, where
the xxx represents the maximum length of the field in characters. For example, if you
were to create a field in a table which is intended to hold a maximum of 50 characters
you would specify the field as an A50.

Number (N) and currency ($) field types permit up to 15 significant digits (including
the decimal point) in the range of real numbers from ±10-307 to ±10307. Number field
values which are greater than 15 significant digits are rounded and stored in scientific
notation. Currency field values are stored in a default predefined format.

Short Number (S) field types permit values in the range of signed integers. (-32,767
to 32,767).

Date (D) field types permit any vaild dates between January 1, 100 A.D. to December
31, 9999. Date values are stored as long integers which represent the number of days
since January 1, A.D.

DataType

String

FieldValue
Description

 This property is an ASCII string with a maximum length of 255 characters. This property holds the
value of the target database field.

27

Remarks

 DataTable programming involves handling database field values as strings only!
Regardless of the actual data type in the database file. This is mandated by the
DataTable's internal data structures. DataTable programmers receive field values from
data table files as String values and write database field values as String values
regardless of the actual field value type present in the database table file. The
DataTable automatically performs data type conversions based on the data type of the
field in the database table file. This data type conversion process is transparent to the
Visual Basic programmer and provides a much simpler interface to database
programming.

DataType

String

IndexID
Description

 This property is an integer which holds the identification of the index to be used with the database
table (specified in the DataTable.TableName property).

Remarks

 This property should be zero (0) to open the database table with all associated indexes.

DataType

Integer

KeySearch
Description

 This property is an integer data member which specifies what portion of the databases primary
index to use for index based searches.

Remarks

 All database key fields must be contiguous fields starting with the first field in the database table.

28

All database searches performed with the SearchKey Action must specify the portion of the
PRIMARY index to search on. For example:

 If there are five key fields in your database table and you are only interested in
finding records which have specific values in the first two key fields lets say "Date" and
"Customer Name", you want to search for records in the database that have 12/12/92
for the "Date" value and "Robert Smith" for the "Customer Name" you would set the
criteria for those fields and place them in the database engine via PutField Actions.
Your KeySearch would be set up as DataTable.KeySearch = 2.

 An example of how to use key fields and database searches using the SearchKey
Action is provided in the DataTable Example Programs section of this document.
(Extensive examples of using key fields and database searches using full and partial
keys are provided in the DataTable User's Manual.)

DataType

Integer

NRecords
Description

 This property is a long value which indicates the number of records present in the database table.

Remarks

 This property is not automatically managed by the DataTable control due to performance reasons
and complications related to network concurrency. Therefore to insure that the value present in this
property is as acurate as possible read the value immediately after performing a NRecords Action
on the table.

DataType

long

Reaction
Description

 This property is an integer value which indicates whether or not a DataTable Action was
performed successfully or not.

Remarks

 Its purpose is to report any errors encountered when performing any DataTable Actions. For a
29

listing of the possible errors reported after performing DataTable Actions see the DataTable /
PARADOX ENGINE ERROR CODES section at the end of this document.

DataType

Integer (Enumerated)

RecordNumber
Description

 This property is a long value which indicates the record number of the current record in the
database table.

Remarks

 This property is not automatically managed by the DataTable control due to performance reasons
and complications related to network concurrency. Therefore to insure that the value present in this
property is as acurate as possible read the value immediately after performing a
GetRecordNumber Action on the table.

DataType

long

SaveEveryChange
Description

 This property is an integer value which indicates whether changes to database tables are done
immediately or buffered to disk.

Remarks

 This property is available to programmers basically for performance reasons. The possible values
of this property are:

Setting Description

0 False
1 True

DataType

Integer (Enumerated)

30

SearchMode
Description

 This property is an integer value which indicates the search mode used in database searches.

Remarks

The possible values of this property are:

Setting Description

0 SEARCHFIRST
1 SEARCHNEXT
2 CLOSESTRECORD

SEARCHFIRST begins the search at the first record in the database, the record
position of the current record is not changed if a search attempt fails to find a match.

SEARCHNEXT begins with the record following the current record in the database, the
record position of the current record is not changed if a search attempt fails to find a
match.

CLOSESTRECORD begins to search at the first record in the database, if a record is not
found (search attempt fails), one of two possibilities exist:

-If there is no exact match, there happens to be a record which has a value lexically
greater than the search value. The current record in the database will be the record
with the first such instance and a record not found error (89) returned.

- There is no record in the database that has a value greater or equal to the search
value. The current record will be the last record in the database and a record not found
error (101) returned.

DataType

Integer (Enumerated)

TableName
Description

 This property is an ASCII string with a maximum length of 255 characters. This string holds the
name of a database table, including any MSDOS PATH specifier. Database file names placed in this
31

property must not include a file extension.

DataType

String

DataTable Example Programs

 In this section detailed examples of how to use the DataTable in the Visual Basic programming
language will be presented. Details concerning how to use the DataTable custom control to read
and write data between Visual Basic programs and database files are covered in detail. Several
example programs have been sent along as part of the working model distribution file set. These
example programs are discussed here in detail.

 This section is a subset of the same section in the registration copy of the DataTable User's
Manual. There is not as much information concerning complex searching, relational models, and
querying present here. There is however, sufficient information to get one started in DataTable
programming. Specific examples of how to search with an index and how to search on a field are
presented here. Also an example is given on how to fill in Visual Basic List and Combo boxes with
data from a database table using the DataTable. For extensive information concerning database
indexing and searching please see the registration copy of the DataTable User's Manual.

Installation Note: The example programs presented in this section (including the Visual Basic
source code programs included with the working model) expect the files CUSTOMER.DB and
CUSTOMER.PX files to be in the C:\ directory. If you wish to change this location do so in the
example programs source code.

DEMO1

 This is the first example program. It is very simple and illustrates a few basic DataTable
programming concepts. It can be found in the working model distribution file set. The files
DEMO1.MAK, DATATBL.BAS, DEMO1.FRM, and DATATBL.VBX constitute the file set for the
DEMO1 example program. The source code is commented. (The database table and index used in
the DEMO1 example program were created using the VBENGINE DATABASE TABLE MAKER
utility program which is also included in the working model file distribution).

 The DEMO1 example program is a very simple illustration of how easily a database application

32

can be generated in Visual Basic using the DataTable control. The DEMO1 example program
consists of one database table "C:\CUSTOMER.DB" with an index file "C:\CUSTOMER.PX" . The
structure of the C:\CUSTOMER.DB database is shown below.

Field Type
--

Name A50
Address A50
City A30
State A2
Zip A10
Phone A14

 The DEMO1.FRM form was designed to be a window into the database. Using this form, users
can view the customer data in the database on a record-by-record basis. There is a field on the form
for every field in the database. Six Text controls are used to hold database field values, and six
Label controls are used to label those fields for the users benefit. There are seven push button
controls on the form for database manipulation:

- Top moves to the first record in the database.
- Bottom moves to the last record in the database
- Previous moves to the previous record in the database
- Next moves to the next record in the database
- Update updates the current record in the database
- Insert inserts the form data as a record in the database
- Delete deletes the current record from the database

 There are two utility push button controls on the form:

- Clear clears all information from the form (blank form)
- Quit terminates the demo program

 We will start the description of this example application in the DEMO1 DataTable control which is
called Customer. Look at the property settings of this control. You will see that the name of the
control is Customer. The database table for this control is C:\CUSTOMER. The only two other
properties important at this stage of the game are IndexID and SaveEveryChange. (The IndexID
property set to 0 indicates that all indexes will be opened with the PRIMARY index being used. The
SaveEveryChange property is set to False meaning that data is buffered to disk. For more
information on these properties see the DataTable Custom Control reference section of this
document.)

 We next see the following code in the Forms load procedure:

Sub Form_Load ()

'This code opens the database table (C:\CUSTOMER) and fills in the Visual Basic
'Form with the information present in the first record in the database.

Customer.Action = OpenTable 'Open up the database table (Customer.TableName)
33

FillForm 'Fill the form

End Sub

 This is only two lines of code! In this two lines of code we have:

- Opened the database file

- Called a Visual Basic subroutine FillForm which will read the data from a record and place that
data onto our form.

 Now let's examine the FillForm subroutine to see what it takes to actually read data from the
database and place it in our Visual Basic form. The FillForm subroutine is a subroutine present in
the Form's general section. Here it is in it's entirety:

Sub FillForm ()

'We need to get the current record in the database:
Customer.Action = GetRecord

'Ok, now lets get the values in the database fields for the
'record we just read in:
'
'We need to make a one-to-one relationship between the fields in the database table
'and the fields on our Visual Basic Form. We will read in the field values from the
'database record and place those values into the .TEXT property of our TEXT controls
'on our Visual Basic form. For each field of interest this is a three-step process:

'1. Specify the name of the database field of interest ---> DataTable.FieldName = "?????"
'2. Get the field value ---> DataTable.Action = GetField
'3. Place the field value in the TEXT control ---> Text1.TEXT = DataTable.FieldValue
'
'Thats all there is to it!
'
'You should make a FillForm like subroutine position independent. Notice that the first line of
'code in this subroutine reads in the current record. Use other routines to move around
'in the table (like the TOP,BOTTOM, NEXT and PREVIOUS buttons in this demo). Making the
'routine position independent means that it can be used and re-used at any time to fill in
'your form with information from any record in your database.

'We will fill in the form now:

Customer.FieldName = "Name"
Customer.Action = GetField
CustomerName.Text = Customer.FieldValue

Customer.FieldName = "Address"
Customer.Action = GetField
Address.Text = Customer.FieldValue

34

Customer.FieldName = "City"
Customer.Action = GetField
City.Text = Customer.FieldValue

Customer.FieldName = "State"
Customer.Action = GetField
State.Text = Customer.FieldValue

Customer.FieldName = "Zip"
Customer.Action = GetField
Zip.Text = Customer.FieldValue

Customer.FieldName = "Phone"
Customer.Action = GetField
Phone.Text = Customer.FieldValue

End Sub

 Notice that the FillForm subroutine is a general purpose subroutine. It simply reads in a record's
worth of data and displays that data on our form. It does not in any way position the current record
in the database. It reads in the current record and displays the field data on the form. The point here
is that we will use other routines to move around in the database and once we position to the
desired record we will call FillForm to display the information.

 At this point in time, our DEMO1 program has opened up our Customer database, read in the first
record and displayed the customer data on our form. The program is now waiting for the user to do
something. Let's look at the top row of push button controls on our form:

Top Bottom Previous Next

 These push button controls are for movement in the database table. They let our DEMO1 user
navigate through our database. Let's take a look at the code attatched to each of these push button
controls:

Sub TopButton_Click ()

'The following code moves to the first record in the data base
'and fills in our form with the information found in that first
'record

Customer.Action = FirstRecord
FillForm
End Sub

Sub BottomButton_Click ()

'The following code moves to the last record in the data base
'and fills in our form with the information found in that last
'record

Customer.Action = LastRecord
FillForm
35

End Sub

Sub PreviousButton_Click ()

'The following code moves to the previous record in the database table. If an
'error is encountered during the move to the record an error message is displayed.
'The DisplayError subroutine is an example of the structure of a generalized
'DataTable error handling routine.
'
'Once the repositioning to the previous record is successfull, we fill in our form
'with information from that record.

Customer.Action = PreviousRecord 'Moving to previous record

If (Customer.Reaction <> 0) Then 'If an error
 DisplayError (Customer.Reaction) 'Display the DataTable Error
 Exit Sub
Else 'If no error
FillForm 'Fill in our form with info from the record
End If

End Sub

Sub NextButton_Click ()

'The following code moves to the next record in the database table. If an
'error is encountered during the move to the next record an error message is displayed.
'The DisplayError subroutine is an example of the structure of a generalized
'DataTable error handling routine.
'
'Once the repositioning to the next record is successfull, we fill in our form
'with information from that record.

Customer.Action = NextRecord 'Moving to the next record in the database

If (Customer.Reaction <> 0) Then 'If an error
 DisplayError (Customer.Reaction) 'Display the DataTable error
 Exit Sub
Else 'If no error
FillForm 'Fill in our form with the information in the record.
End If

End Sub

 Pretty simple code! In essence, each one of these positional controls simply performs a single
DataTable Action to reposition the database's current record pointer. Then calls the FillForm
subroutine to read the data in and display it on our form. (The Next and Previous buttons also
demonstrate how to incorporate a DataTable error handling routine.)

 Now let's take a look at the Delete push button's code:

36

Sub DeleteButton_Click ()
'This code deletes the current record from the database
'The current record after the delete is performed, is the record immediately
'following the deleted record. We then fill in our form with info from that
'record.

Customer.Action = DeleteRecord 'We will delete the current record.
FillForm 'Now fill in form with the current record.

End Sub

 It doesn't take a lot of code to delete a record from the database. When this push button is
clicked by the user, the record is deleted from the database by performing the DeleteRecord Action.
When the record is deleted from the database the DataTable control automatically moves the
database record pointer to the next available record so all we have to do is to call our FillForm
subroutine to display the current database record.

 Now we only have two more database related push button controls to look at Update and Insert.

Sub UpdateButton_Click ()
UpdateRec
End Sub

Sub InsertButton_Click ()
InsertRec
End Sub

 Thats it for the buttons themselves, now let's look at the two subroutines UpdateRec and
InsertRec each present in the Form's general section:

Sub UpdateRec ()

'Here we transfer the information from the Visual Basic Form and update the
'current record in the database table.

'To do this requires a three-step process for each field in the database table:

'1. Specify the name of the field of interest ---> DataTable.FieldName
'2. Specify the field value ---> DataTable.FieldValue = A String value
'3. Put the field into the DataTable record ---> DataTable.Action = PutField

'We do this for each field in the database table.
'When we are finished we UPDATE the record into the
'database table ---> DataTable.Action = UpdateRecord

Customer.FieldName = "Name"
Customer.FieldValue = CustomerName.Text
Customer.Action = PutField

Customer.FieldName = "Address"
Customer.FieldValue = Address.Text
Customer.Action = PutField

37

Customer.FieldName = "City"
Customer.FieldValue = City.Text
Customer.Action = PutField

Customer.FieldName = "State"
Customer.FieldValue = State.Text
Customer.Action = PutField

Customer.FieldName = "Zip"
Customer.FieldValue = Zip.Text
Customer.Action = PutField

Customer.FieldName = "Phone"
Customer.FieldValue = Phone.Text
Customer.Action = PutField

Customer.Action = UpdateRecord

End Sub

Sub InsertRec ()

'Here we transfer the information from the Visual Basic Form and insert it
'into the database table.

'To do this requires a three-step process for each field in the database table:

'1. Specify the name of the field of interest ---> DataTable.FieldName
'2. Specify the field value ---> DataTable.FieldValue = A String value
'3. Put the field into the DataTable record ---> DataTable.Action = PutField

'We do this for each field in the database table.
'When we are finished we INSERT the record into the
'database table ---> DataTable.Action = InsertRecord

Customer.FieldName = "Name"
Customer.FieldValue = CustomerName.Text
Customer.Action = PutField

Customer.FieldName = "Address"
Customer.FieldValue = Address.Text
Customer.Action = PutField

Customer.FieldName = "City"
Customer.FieldValue = City.Text
Customer.Action = PutField

Customer.FieldName = "State"
Customer.FieldValue = State.Text
Customer.Action = PutField

Customer.FieldName = "Zip"
38

Customer.FieldValue = Zip.Text
Customer.Action = PutField

Customer.FieldName = "Phone"
Customer.FieldValue = Phone.Text
Customer.Action = PutField

Customer.Action = InsertRecord

End Sub

 Not to difficult is it! Well that's about it, a few more minor details to cover, like the Clear push
button. All it does is clear the text values in the Form's Text controls. No DataTable Actions are
associated with the Clear button. However, an important concept is associated with the Quit button.
Remember way back at the beginning, when we set up the DataTable control's SaveEveryChange
property to buffer database changes too disk? Well before we quit the DEMO1 example program we
want to make sure that any changes are indeed saved to the database disk file. This can be done at
any time manually by performing the DataTable's FlushBuffers Action (not available in the Working
Model release). But in DEMO1, we simply rely on the CloseTable Action to save all changes before
closing the table.

Database Searching Techniques

The DEMO2 Example Program (Searching on a Specific Field)

 The DEMO2 program is a modified version of the DEMO1 example program. DEMO2 is DEMO1
with one extra subroutine CustomerName LostFocus(). The CustomerName field is a window into
our Customer database's Name field. The DEMO2 program is structured to accept keyboard input
from the user and when the user types in a customer's name and leaves the CustomerName control
(LostFocus), the Customer database is searched (on the NAME field) for the name typed in by the
user. If the user typed name is not found, the remaning fields are cleared and we expect to receive
information for a new customer. If the user typed name is found in the database, the remaing fields
on the form are filled in with that customer's information.

 Let's look at the code in the CustomerName LostFocus subroutine:

Sub CustomerName_LostFocus ()

'This code demonstrates how to search a database on a specific field for a given value.
'When you leave this field, this lost focus subroutine is executed.

'The value in the CustomerName.Text is then searched for in the database table.
'The database field searched is "Name".

39

'If the search is successfull the record is displayed on the form. If the search
'fails an error message is displayed, the form is cleared (with the typed in value)
'replaced in the CustomerName.Text expecting to get a new customer's information.

Dim TheNameTyped As String 'Temporary variable to hold Customer's name.

Customer.SearchMode = SEARCHFIRST

Customer.FieldName = "Name"
Customer.FieldValue = CustomerName.Text
Customer.Action = PutField

Customer.Action = SearchField
If (Customer.Reaction <> 0) Then
 DisplayError (Customer.Reaction)
 TheNameTyped = CustomerName.Text
 ClearButton_Click
 CustomerName.Text = TheNameTyped
 Exit Sub
Else
 FillForm
End If

End Sub

The DEMO3 Example Program (Searching with an Index)

 The DEMO2 example program shows how you can search a database on a specific field for a
given value. The DEMO3 program is a modified version of the DEMO1 example program. DEMO3
is DEMO1 with one extra subroutine CustomerName LostFocus(). The CustomerName field is a
window into our Customer database's Name field. The DEMO3 program is structured to accept
keyboard input from the user and when the user types in a customer's name and leaves the
CustomerName control (LostFocus), the Customer database is searched (on the PRIMARY index)
for the name typed in by the user. If the user typed name is not found, the remaning fields are
cleared and we expect to receive information for a new customer. If the user typed name is found in
the database, the remaing fields on the form are filled in with that customer's information.

 Let's look at the code in the CustomerName LostFocus subroutine:

Sub CustomerName_LostFocus ()

'This code demonstrates how to search a database on a specific key.
'When you leave this field, this lost focus subroutine is executed.

'The value in the CustomerName.Text is then searched for in the database table.
'The database field searched is "Name" (The only key field in this example).

'If the search is successfull the record is displayed on the form. If the search
'fails an error message is displayed, the form is cleared (with the typed in value)
40

'replaced in the CustomerName.Text expecting to get a new customer's information.

Dim TheNameTyped As String 'Temporary variable to hold Customer's name.

Customer.SearchMode = SEARCHFIRST
Customer.KeySearch = 1 'The first and only field in PRIMARY index

Customer.FieldName = "Name" 'The first and only field of the key
Customer.FieldValue = CustomerName.Text 'The value to search for
Customer.Action = PutField 'Submit the search criteria

Customer.Action = SearchKey 'Perform the search

If (Customer.Reaction <> 0) Then 'If an error
 DisplayError (Customer.Reaction) 'Display the error
 TheNameTyped = CustomerName.Text 'Assume new customer, temp store for new
customer name
 ClearButton_Click 'Clear the form
 CustomerName.Text = TheNameTyped 'Place the new customer name back in the form
 Exit Sub 'Now let the user type in the new info
Else 'Search was successfull
 FillForm 'Fill in the form with customer info
End If

End Sub

Note: Searching techniques using the DataTable are discussed in greater detail in the DataTable
User's Manual.

 The last example program in the DataTable (version 1.1) working model distribution file set is the
DEMO4 example program. The DEMO4 program is pretty much the same as the DEMO3 program
but it includes an example on how to read data from a database table and place that data into a
combo box for database sourced pick lists. The DEMO4 program will not be examined in detail
here, the source code is well commented. Look for the new subroutines FillCustomerCombo and
EmptyCustomerCombo in the Form's general section. For more DataTable example programs and
more detailed information on DataTable programming place your order for a registered copy today.
From time-to-time new versions of the DataTable working model will be released. New example
programs covering different aspects of DataTable programming will be distributed therein.

DataTable / PARADOX ENGINE
ERROR CODES

Error Code Description

1 Drive not ready
2 Directory not found

41

3 File is busy
4 File is locked
5 File not found
6 Table damaged
7 Primary index damaged
8 Primary index is out of date
9 Record is locked
10 Sharing violation - directory busy
11 Sharing violation - directory locked
12 No access to directory
13 Sort for index different from table
14 Single user but directory is shared
15 Multiple PARADOX.NET files found
21 Insufficient password rights
22 Table is write-protected
30 Data type mismatch
31 Argument is out of range
33 Invalid argument
40 Not enough memory to complete operation
41 Not enough disk space to complete operation
50 Another user deleted record
70 No more file handles available
72 No more table handles available
73 Invalid date given
74 Invalid field name
75 Invalid field handle
76 Invalid table handle
78 Engine not initialized
79 Previous fatal error, cannot proceed
81 Table structures are different
82 Engine already initialized
83 Unable to perform operation on open table
86 No more temporary names available
89 Record was not found
94 Table is indexed
95 Table is no| indexed
96 Secondary index is out of date
97 Key violation
98 Could not login on network
99 Invalid table name
101 End of table
102 Start of table
103 No more record handles available
104 Invalid record handle
105 Operation on empty table
106 Invalid lock code
107 Engine not initialized
108 Invalid file name
109 Invalid lock
110 Invalid lock handle
111 Too many locks on table
112 Invalid sort-order table
113 Invalid net type
114 Invalid directory name
115 Too many passwords specified
116 Invalid password
117 Buffer too small for result
118 Table is busy
119 Table is locked
120 Table was not found
121 Secondary index was not found
122 Secondary index is damaged
123 Secondary index is already open
124 Disk is write-protected
125 Record is too big for index
126 General hardware error
127 Not enough stack space to complete operation
128 Table is full
42

129 Not enough swap buffer space to complete operation
130 Table is SQL replica
131 Too many clients for Engine DLL
132 Exceeds limits specified in WIN.INI
133 Too many files open simultaneously (includes all clients)
134 Can't lock PARADOX.NET - is SHARE.EXE loaded
135 Can't run Engine in Windows real mode
136 Can't modify unkeyed table with non-maintained secondary index

43

